The role of the 11-cis-retinal ring methyl substituents in visual pigment formation.
نویسندگان
چکیده
Artificial visual pigment formation from ring-demethylated retinals was studied in an effort to understand the effect that methyl groups on the chromophore cyclohexenyl ring have on the visual cycle. The stereoselective synthesis of the 11-cis-ring-demethylated analogues involves thallium-accelerated Suzuki cross-coupling reactions and highly stereocontrolled Wittig reactions to form key bonds. Only 11-cis-1,1,5-trisdemethylretinal (2) failed to form an artificial pigment, whilst variable pigment-formation yields were determined for the remaining analogues, increasing with the number (and location) of the chromophore hydrophobic ring methyl groups. Our results with the monodemethylated analogues 11-cis-5-demethylretinal (4) and 11-cis-1-demethylretinal (5) show that the C1-2-CH(3) groups are more important for pigment formation than the C5-CH(3) substituent. This is reflected in the absorption maxima of the artificial pigments, with values closer to that of native rhodopsin for 4. Docking studies based on a rhodopsin crystal structure, however, predict a lower pigment stability for 4 than for 5. Gas-phase DFT (B3LYP/6-31G*) computations of the free-ligand geometries, conformational searches about the C6--C7 bond, and docking studies revealed that, although the conformation of bound 5 is close to that of the native chromophore, the ligand needs to overcome the energy cost of shifting the unbound favored 6-s-trans conformation to the bound 6-s-cis form. In addition, the presence of an extra methyl group at C18 (11-cis-18-methylretinal, 7) is tolerated well and adds further stability to the complex, most probably due to increased hydrophobic interactions.
منابع مشابه
A methyl group at C7 of 11-cis-retinal allows chromophore formation but affects rhodopsin activation
The newly synthesized 11-cis-7-methylretinal can form an artificial visual pigment with kinetic and spectroscopic properties similar to the native pigment in the dark-state. However, its photobleaching behavior is altered, showing a Meta I-like photoproduct. This behavior reflects a steric constraint imposed by the 7-methyl group that affects the conformational change in the binding pocket as a...
متن کاملKinetics of visual pigment regeneration in excised mouse eyes and in mice with a targeted disruption of the gene encoding interphotoreceptor retinoid-binding protein or arrestin.
Photoisomerization of 11-cis-retinal to all-trans-retinal and reduction to all-trans-retinol occur in photoreceptor outer segments whereas enzymatic esterification of all-trans-retinol, isomerization to 11-cis-retinol, and oxidation to 11-cis-retinal occur in adjacent cells. The processes are linked into a visual cycle by intercellular diffusion of retinoids. Knowledge of the mechanistic aspect...
متن کاملNew developments in the visual cycle: functional role of 11-cis retinyl esters in the retinal pigment epithelium.
Although both 11-cis and all-tmns retinyl esters exist in the retinal pigment epithelium, the relative importance of each in the visual cycle has been unclear. Recent data indicate that there are 2 biochemical pathways leading to the formation of 11-cis retinoids from the retinal pigment epithelium pool of retinyl esters. One well-established pathway is located in the endoplasmic reticulum wher...
متن کاملLow aqueous solubility of 11-cis-retinal limits the rate of pigment formation and dark adaptation in salamander rods
We report experiments designed to test the hypothesis that the aqueous solubility of 11-cis-retinoids plays a significant role in the rate of visual pigment regeneration. Therefore, we have compared the aqueous solubility and the partition coefficients in photoreceptor membranes of native 11-cis-retinal and an analogue retinoid, 11-cis 4-OH retinal, which has a significantly higher solubility i...
متن کاملNoninvasive two-photon imaging reveals retinyl ester storage structures in the eye
Visual sensation in vertebrates is triggered when light strikes retinal photoreceptor cells causing photoisomerization of the rhodopsin chromophore 11-cis-retinal to all-trans-retinal. The regeneration of preillumination conditions of the photoreceptor cells requires formation of 11-cis-retinal in the adjacent retinal pigment epithelium (RPE). Using the intrinsic fluorescence of all-trans-retin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Chembiochem : a European journal of chemical biology
دوره 7 11 شماره
صفحات -
تاریخ انتشار 2006